

PHMSA Pipeline Seam Workshop Perspectives on LDC Transmission & Distribution Pipelines

Arlington, Virginia
July 20, 2011

Principal Compliance Engineer

NW Natural

Overview of Transmission PL Infrastructure

- ~ 300,000 miles of transmission pipelines
- ~ 45,000 miles of transmission pipe operated by Local Distribution Companies (LDCs)
- ~ 8,000 miles of LDC transmission pipe in HCAs
- LDC transmission pipe different from interstate transmission lines
 - Often integrated into distribution system
 - 62% of LDC transmission pipe in HCAs is unpiggable

Overview of Distribution PL Infrastructure

- ~ 2.1 million miles of mains and services
 - ~ 1.14 million miles of mains
 - ~ 61 million service lines
- Diversity of materials
 - Bare steel
 - Coated steel
 - Cast iron
 - Plastics
 - Other

Pipeline Incidents w/Death or Major Injury (1986-2010)

Data: DOT/PHMSA Pipeline Incident Data (as of Jan. 19, 2011)

Distribution Safety Performance Leaks & Incidents

Note: Leak and mileage data for 2010 is not yet available. 2010 Incidents are per 10,000 miles using 2009 miles.

Conclusions From Safety Metrics

- Pipeline safety incidents declining in spite of increasing energy transported and a growing pipeline infrastructure
- Although serious and significant incidents are declining, serious accidents occur too often, providing an urgency to "Raise the Bar"

Important to understand the major causes of reportable incidents

DOT Significant Dist. Incidents 2001-2010

DOT Significant Onshore T. Line Incidents 2001-2010

DOT Significant Onshore T. Line Incidents 2001-2010

Technical Reports on Pipe Seam Issues

- Putting Manufacturing and Construction Defects into Perspective-
 - Manufacturing defects (defective pipe and defective seams) accounted for only 3.3 percent of the reportable incidents (incidents from 1985-2000)
 - The relative significance of the threats from manufacturing and construction defects is small compared to that of many of the other threats recognized by ASME B31.8S
 - Even though the mill test is of short duration, it is an effective screening tool
 - Evaluating the Stability of Manufacturing and Construction Defects in Natural Gas Pipelines, DOT by John F. Kiefner, April, 2007

DOT Reportable T. Line Incidents 1985-2000

Reference: "Evaluating the Stability of Manufacturing and Construction Defects in Natural Gas Pipelines", April, 2007, John F. Kiefner

AGA American Gas Association

Technical Reports on Pipe Seam Issues

 In most circumstances, gas pipelines are not at significant risk of failure from the pressure-cycleinduced growth of original manufacturing-related or transportation-related defects. Therefore, there is no need, in general, to conduct periodic integrity assessments of gas pipelines from the standpoint of pressure-cycle-induced fatigue

Effects of Pressure Cycles on Gas Pipelines, for P-PIC and GRI, by John F. Kiefner and Michael J. Rosenfeld,

Technical Reports on Pipe Seam Issues-San Bruno Incident

- NTSB's findings to date identified both the material and the fabrication welds of the section of pipeline that failed did not meet either: (1) the engineering consensus standards applicable to natural gas transmission pipelines at the time, or (2) the PG&E specifications in effect at the time of construction.
- Our consultants support the theory there was an external force that triggered the manufacturing defect to propagate, causing the pipe to fail
- Report of the Independent Review Panel created by CPUC Resolution No. L-403 to investigate the San Bruno Incident

Addressing Pipeline Seam Issues

- Much has already been done to address pipe seam issues-
 - Improvements in pipe quality at the mill
 - Post-construction pressure tests
 - Transmission Integrity Management (TIMP)
 - Distribution Integrity Management (DIMP)

Dramatic Improvements in Pipe Quality

- API 5L (1928) & API 5LX (1948) provide minimum requirements for pipe used in nat. gas and HL lines
- Most line pipe in service today manufactured per API 5L or 5LX specifications which specify:
 - Chemical composition
 - Mechanical properties
 - Mill pressure testing
 - Dimensions
 - Inspection- Destructive and NDT seam inspections
 - Quality criteria
 - > Mill test pressures have increased over time

Mill Hydrostatic Testing

Pipe mills have pressure tested pipe beginning in 1928. The mill tests as a percent of SMYS have increased over the years. API 5LX currently tests to 90% SMYS

Post-Construction Pressure Tests

- Pressure tests are an effective tool to identify manufacturing and construction defects
- Many operators conducted pressure tests in accordance with consensus standards before 1970
- Mandatory pressure tests since 1970 (Subpart J)
- Based on AGA survey, est. 61% of LDC transmission lines have at least one documented pressure test
- AGA supports pressure tests for new construction, but hydro/pressure testing in-service pipe has serious unintended consequences (internal corrosion, loss of reliability of service, pressure test safety, etc.)

Addressing Gas Transmission Pipeline Threats

Threat Category	Time Based Behavior	Mitigation
Corrosion: - External - Internal - Stress Corrosion Cracking	Time Dependent	Periodic Assessment
Defects: - Manufacturing Defects - Fabrication & Construction Defects - Equipment Defects	Stable unless activated by a change in service conditions	One-Time Assessment
Excavation Damage Incorrect Operation Natural Force Damage Other Outside Force Damage All Other Causes	Time Independent or Random	Prevention & Surveillance
References: ASME B31.8s Integrity Characteristics of Vintage Pipelines, INGAA, 2005		

ILI Limitations & Benefits

	Limitations	Benefits
	 Many lines are not piggable. An estimated 62% of LDC transmission pipe is not piggable. 	 It is a non-destructive test
	 Complex character of some seams or flaws makes accurate detecting, identifying, and sizing difficult 	 It is more sensitive and efficient than a hydrotest
	 Sometimes important flaws are missed 	 Many operators have had good success finding significant flaws
	 Meticulous non-destructive evaluation in the field required to validate ILI – Difficult to consistently achieve. 	 Periodic runs can compare defects for growth
G	 Must select specific ILI tool(s) to detect seam issues – some are challenging for gas lines (UT) 	 Possible to detect seam issues

Hydro-test Limitations & Benefits

Limitations	Benefits
 In-service pipe difficult to shutdown for testing 	 Applies to corrosion, SCC, fatigue, and seams
 Incomplete dewatering can cause severe corrosion problems, freezing/loss of svc 	Capability is generally predictable
 Effectiveness is reduced by variable pipe properties 	 Proven success for managing progressive degradation conditions
 Not a mitigation of circumferential defects 	
 Less sensitive than ILI for many defect types 	
 Can grow subcritical defects 	

Summary

- AGA is committed to work with other stakeholders to further improve the industry's pipeline safety performance
- The relative threat from manufacturing (seam) and construction defects is small compared to other threats
- There has been considerable progress in addressing pipe manufacturing (seam) issues
- AGA supports ongoing R&D to develop new pipe inspection technology

QUESTIONS?

Bruce Paskett
Principal Compliance Engineer
NW Natural
blp@nwnatural.com